The Geometry of Slow Manifolds near a Folded Node
نویسندگان
چکیده
This paper is concerned with the geometry of slow manifolds of a dynamical system with two slow and one fast variable. Specifically, we study the dynamics near a folded node singularity, which is known to give rise to so-called canard solutions. Geometrically, canards are intersection curves of two-dimensional attracting and repelling slow manifolds, and they are a key element of slow-fast dynamics. For example, canard solutions are associated with mixed-mode oscillations, where they organize regions with different numbers of small oscillations. We perform a numerical study of the geometry of two-dimensional slow manifolds in the normal form of a folded node in R3. Namely, we view the part of a slow manifold that is of interest as a one-parameter family of orbit segments up to a suitable cross-section. Hence, it is the solution of a two-point boundary value problem, which we solve by numerical continuation with the package AUTO. The computed family of orbit segments is used to obtain a mesh representation of the manifold as a surface. With this approach we show how the attracting and repelling slow manifolds change in dependence on the eigenvalue ratio μ of the reduced flow. At μ = 1 two primary canards bifurcate and secondary canards are created at odd integer values of μ. We compute 24 secondary canards to investigate how they spiral more and more around one of the primary canards. The first twelve secondary canards are continued in μ to obtain a numerical bifurcation diagram.
منابع مشابه
Local Analysis near a Folded Saddle-Node Singularity
Folded saddle-nodes occur generically in one parameter families of singularly perturbed systems with two slow variables. We show that these folded singularities are the organizing centers for two main delay phenomena in singular perturbation problems: canards and delayed Hopf bifurcations. We combine techniques from geometric singular perturbation theory – the blow-up technique – and from delay...
متن کاملMixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system.
We investigate the organization of mixed-mode oscillations in the self-coupled FitzHugh-Nagumo system. These types of oscillations can be explained as a combination of relaxation oscillations and small-amplitude oscillations controlled by canard solutions that are associated with a folded singularity on a critical manifold. The self-coupled FitzHugh-Nagumo system has a cubic critical manifold f...
متن کاملReturn maps of folded nodes and folded saddle-nodes.
Folded nodes occur in generic slow-fast dynamical systems with two slow variables. Open regions of initial conditions flow into a folded node in an open set of such systems, so folded nodes are an important feature of generic slow-fast systems. Twisting and linking of trajectories in the vicinity of a folded node have been studied previously, but their consequences for global dynamical behavior...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملFolding Geometry Surveys of Asef Mountain, Northern Shiraz (Southwestern Folded Zagros Belt)
In this paper the geometrical relationship of the folds which exist in the Folded Zagros Mountains, including Asef Mountain (northern Iran), were studied. The southern and western zones of the Zagros Mountains are called the Folded Zagros. These zones extend approximately 1,375 km in length with a width ranging from 120 to 250 km. Asef Mountain is located in northern Shiraz (from northern Sarda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 7 شماره
صفحات -
تاریخ انتشار 2008